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EXECUTIVE SUMMARY 

The research and development reported here is part of the Technology Enabled Risk-Informed 

Maintenance Strategy project sponsored by the U.S. Department of Energyôs Light Water Reactor 

Sustainability program. The primary objective of the research presented in this report is to produce a 

technical basis for developing explainable and trustable artificial intelligence (AI) and machine learning 

(ML) technologies. The technical basis will lay the foundation for addressing the technical and regulatory 

adoption challenges of AI/ML technologies across plant assets and the nuclear industry at scale and to 

achieve seamless cost-effective automation without compromising plant safety and reliability. 

The technical basis ensuring wider adoption of AI/ML technologies presented in this report was 

developed by Idaho National Laboratory (INL), in collaboration with Public Service Enterprise Group 

(PSEG) Nuclear, LLC. To develop the initial technical basis, the circulating water system (CWS) at the 

PSEG-owned plant sites was selected as the identified plant asset. Specifically, the issue of waterbox 

fouling diagnosis in the CWS using different types of CWS data is presented to address the said 

challenge. The approach presented in this report is based on the closedïloop forwardïbackward process 

that tries to capture the advancements in data science addressing the explainability of AI/ML outcomes, 

user-centric interpretability of those outcomes, and how user interpretation can be used as feedback to 

further simplify the process. A prototype interface is developed to present a focused component-level 

display of the ML model outputs in a usable and digestible form. 

The forward process moves from data-to-decision and is one of the main parts of research performed 

as AI/ML technologies are developed. The forward process entails a rigorous mathematical approach that 

accounts for data preprocessing; data integration; transformation of the data into usable information to 

train, validate, and test ML models; hyperparameter optimization of ML models; uncertainty 

quantification of final outputs by accounting for the accumulation of errors; and presentation of the results 

to the end-user. The focus is to explain AI/ML solutions by utilizing objective metrics, such as Local 

Interpretable Model-agnostic Explanations and Shapley Additive Explanations, that can capture the 

rigorous mathematics. The focus of a metric-based approach is to quantify the effectiveness of the 

explanation based on performance differences between the ML models, the number of features used to 

construct the explanation, and the stability of the explanation. 

In the backward process, the objective metrics developed as part of the forward process to explain 

AI/ML technologies are verified by the end-user. As part of the backward process, a user-centric 

visualization is developed to present AI/ML outcomes with objective metrics and other information to 

elicit user interpretation. Based on elicited input from end-users with different levels of expertise and 

functional positions within the organization, the objective metrics and visualization are adapted to ease 

the user interpretation and requirements of AI/ML outcomes to inform decision. 

The technical basis developed in this report will be extended to other fault modes and to a wide user 

verifiability study. For the next year, research will focus on the verification and validation of 

explainability and trustworthiness of AI/ML technologies. As part of the path forward, novelty 

detectionðwhere the current data are compared to the training data set to identify operating regimes 

outside the scope of the modelðwill be explored in detail to determine its role in improving ML 

trustability. 

  



 

 iv 

 

ACKNOWLEDGEMENTS 

This report was made possible through funding from the U.S. Department of 

Energy (DOE)ôs Light Water Reactor Sustainability program. We are grateful to 

William Walsh of DOE and Bruce P. Hallbert and Craig A. Primer at Idaho 

National Laboratory (INL) for championing this effort. We thank Kelsey B. 

Gaston at INL for the technical editing of this report. We thank Barry Pike III 

and Lauren M. Perttula of RED, Inc. for some of the graphics contained in the 

report. We would also like to thank Matthew Pennington and Lee Papasergi at 

the PSEG Monitoring and Diagnostic Center for their valuable technical 

contributions. 



 

 v 



 

 vi 

CONTENTS 

EXECUTIVE SUMMARY ..........................................................................................................................iii  

ACKNOWLEDGEMENTS .......................................................................................................................... iv 

ACRONYMS ................................................................................................................................................. x 

1. INTRODUCTION AND MOTIVATION .......................................................................................... 1 

2. APPROACH ENSURING ADOPTION OF ARTIFICIAL INTELLIGENCE BASED 

SOLUTIONS IN NUCLEAR INDUSTRY ........................................................................................ 2 

3. DATA-TO-DECISION CONSIDERATION ENSURING ADOPTION OF ARTIFICIAL 

INTELLIGENCE BASED SOLUTIONS ........................................................................................... 4 

3.1 Waterbox Fouling Issue in Circulating Water System ............................................................. 5 

3.2 Data and Variabilities ............................................................................................................... 5 

3.3 Feature Explainability Metrics.................................................................................................. 6 
3.3.1 Shapley Additive Explanations (SHAP) ...................................................................... 6 
3.3.2 Local Interpretable Model-agnostic Explanations (LIME) ......................................... 8 

3.4 Machine Learning Models ........................................................................................................ 8 
3.4.1 Extreme Gradient Boosting ......................................................................................... 8 
3.4.2 Random Forest ............................................................................................................. 8 
3.4.3 Deep Neural Network .................................................................................................. 9 
3.4.4 Hyperparameters of ML Models ................................................................................. 9 

3.5 Results ..................................................................................................................................... 10 
3.5.1 XGBoost Performance ............................................................................................... 10 
3.5.2 Random Forest and Deep Neural Network Performance .......................................... 16 

4. HUMAN FACTORS CONSIDERATIONS TO EVALUATE A USABLE ADOPTION OF 

ARTIFICIAL INTELLIGENCE BASED SOLUTIONS .................................................................. 20 

4.1 Introduction ............................................................................................................................. 20 
4.1.1 Key Concepts: Explainability and Trust .................................................................... 20 
4.1.2 Trust in Automation ................................................................................................... 20 
4.1.3 Explainable AI ........................................................................................................... 22 
4.1.4 Human-Centered Artificial Intelligence .................................................................... 23 
4.1.5 Nuclear Safety Culture .............................................................................................. 25 
4.1.6 Assessing Trust and Explainability in Interface ........................................................ 25 

4.2 Method .................................................................................................................................... 26 
4.2.1 Experimental Design ................................................................................................. 26 
4.2.2 Interface Design ......................................................................................................... 26 
4.2.3 Procedure ................................................................................................................... 28 

4.3 Results ..................................................................................................................................... 28 
4.3.1 Results of Maintenance Decision Task ...................................................................... 28 
4.3.2 Interface Design and Model Feedback ...................................................................... 29 

4.4 Discussion ............................................................................................................................... 30 
4.4.1 Potential Barriers to AI/ML Adoption in the Nuclear Industry ................................. 31 
4.4.2 Increasing Trust in AI ................................................................................................ 31 
4.4.3 Matching User Mental Models .................................................................................. 32 



 

 vii  

4.5 Potential Research Gaps ......................................................................................................... 32 
4.5.1 Explainability and Trust Construction ....................................................................... 32 
4.5.2 Deeper Interface Development to Support Diagnostic Processes ............................. 32 
4.5.3 Matching Model Process to Userôs Mental Models .................................................. 33 
4.5.4 Nuclear Safety Culture Challenges ............................................................................ 33 

5. SUMMARY AND PATH FORWARD ............................................................................................ 33 

6. REFERENCES .................................................................................................................................. 34 

 

FIGURES 

Figure 1. Transition from a PM program to a risk-informed PdM program. ................................................ 1 

Figure 2. Data-to-decision roadmap for a risk-informed PdM strategy. ....................................................... 3 

Figure 3. Forward-backward process to ensure reproducibility and interpretability of AI/ML 

technologies. .................................................................................................................................. 3 

Figure 4. An example of changes to the CWS process data before and after waterbox fouling at 

the Salemôs Unit 2 waterbox 22B.................................................................................................. 5 

Figure 5. Examples of CWS measurements: showing Gross load, temperatures for the Stator, 

MIB, MOB, Pump status, DT, and Motor current. ....................................................................... 7 

Figure 6. Feature value influence on SHAP values in prediction of Waterbox fouling. ............................. 11 

Figure 7. Feature importance for all the features in predicting waterbox fouling versus healthy 

data. ............................................................................................................................................. 11 

Figure 8. Local interpretation of an instance corresponding to waterbox fouling. ...................................... 12 

Figure 9. Local interpretation of an instance corresponding to healthy condition. ..................................... 12 

Figure 10. Feature value influence (when feature DT is missing) on SHAP values in prediction of 

Waterbox fouling. ........................................................................................................................ 13 

Figure 11. Feature value influence (when feature Motor Current is missing) on SHAP values in 

prediction of Waterbox fouling. .................................................................................................. 13 

Figure 12. Feature value influence (when feature MOB temperature is missing) on SHAP values 

in prediction of waterbox fouling. ............................................................................................... 14 

Figure 13. A test instance (2018-02-02 20:00:00) corresponding to waterbox fouling when all the 

features are available. .................................................................................................................. 15 

Figure 14. A test instance (2018-02-02 20:00:00) corresponding to waterbox fouling when feature 

DT is missing............................................................................................................................... 15 

Figure 15. A test instance (2018-02-02 20:00:00) when feature Motor Current is missing. ....................... 16 

Figure 16. Training and test data were split into time segments with similar amounts of labeled 

data for healthy and waterbox fouling data. These time segments became folds for cross 

validation of the models' performance. ....................................................................................... 17 

Figure 17. MOB temperature is showing a seasonal dependance as the temperatures are higher 

during the summer and lower during the winter. ........................................................................ 18 



 

 viii  

Figure 18. Local explanation of the RF's waterbox fouling prediction using LIME. Positive, green 

values are those contributing to waterbox fouling, while negative, red values contribute 

to a healthy determination. The RF has 82% confidence in this prediction. Features 

have been anonymized. ............................................................................................................... 19 

Figure 19. Relationship between calibration, resolution, and automation capability. Reproduced 

from Lee and See [18]. ................................................................................................................ 22 

Figure 20. Examples of tasks that fall under two-dimensional HCAI. ........................................................ 24 

Figure 21. Scenario selection screen. .......................................................................................................... 26 

Figure 22. Interface with location markers. ................................................................................................. 28 

Figure 23. Graphical representation of a model being fit within the training distribution (white 

area) and how the extrapolation into new domains (gray area) may vary. Figure from 

[48]. ............................................................................................................................................. 34 

 

TABLES 

Table 1. DNN parameters. ............................................................................................................................. 9 

Table 2. Classification performance results. (All the features are available). ............................................. 10 

Table 3. Prediction performance and feature importance under unavailability of different 

measurements during training. .................................................................................................... 14 

Table 4. SHAP model prediction results for the CWP 13B instance 2018-02-02 20:00:00 for 

Waterbox fouling. ........................................................................................................................ 16 

Table 5. RF training and testing accuracies with inputs of DT, MOB temperature, and motor 

current. The highlighted portion shows an instance of testing data well within the 

training distribution and an instance of overfitting. .................................................................... 17 

Table 6. Prediction performance with unavailability of different features during training. ........................ 18 

Table 7. Global feature importance for DNN and RF. ................................................................................ 18 

Table 8. Study design. ................................................................................................................................. 26 

Table 9. Interface features and locations. .................................................................................................... 27 

Table 10. Results of decision task. .............................................................................................................. 29 

 



 

 ix 



 

 x 

ACRONYMS 

AI artificial intelligence 

CWP circulating water pump 

CWS circulating water system 

DOE Department of Energy 

DNN deep neural network 

DT differential temperature 

HCAI human-centered artificial intelligence 

INL Idaho National Laboratory 

LIME Local Interpretable Model-agnostic Explanations 

LWR light water reactor 

LWRS Light Water Reactor Sustainability 

M&D  monitoring and diagnostic 

MIB  motor inboard 

MOB motor outboard 

ML machine learning 

NN neural networks 

NPP nuclear power plant 

NRC Nuclear Regulatory Commission 

O&M operation and maintenance 

PdM predictive maintenance 

PM preventive maintenance 

PSEG Public Service Enterprise Group 

RF  random forest 

R&D research and development 

SHAP  Shapley Additive Explanations 

TERMS Technology-Enable Risk-informed Maintenance Strategy 

XAI  explainable artificial intelligence 

  



 

 1 

TECHNICAL BASIS FOR ADVANCED ARTIFICIAL 
INTELLIGENCE AND MACHINE LEARNING ADOPTION 

IN NUCLEAR POWER PLANTS  

1. INTRODUCTION AND MOTIVATION 

The primary objective of the research presented in this report is to produce a technical basis for 

developing explainable and trustable artificial intelligence (AI) and machine learning (ML) technologies. 

The technical basis will lay the foundation for addressing the adoption challenges of AI/ML technologies 

across plant assets and the nuclear fleet to achieve risk-informed predictive maintenance (PdM) strategies 

at commercial nuclear power plants (NPPs). Over the years, the nuclear fleet has relied on labor-intensive, 

time-consuming preventive maintenance (PM) programs, driving up operation and maintenance (O&M) 

costs to achieve high-capacity factors. A well-constructed, risk-informed PdM approach for an identified 

plant asset has been developed in [1] that takes advantage of advancements in data analytics, AI/ML, 

physics-informed modeling, and visualization. These technologies would allow commercial NPPs to 

reliably transition from the current labor-intensive PM programs to a technology-driven PdM program 

(see Figure 1), thus eliminating unnecessary O&M costs. 

 

Figure 1. Transition from a PM program to a risk-informed PdM program. 

The research and development (R&D) reported here is part of the Technology Enabled Risk-Informed 

Maintenance Strategy (TERMS) project sponsored by the U.S. Department of Energy (DOE)ôs Light 

Water Reactor Sustainability (LWRS) program. The LWRS program is an R&D program conducted in 

close partnership with industry to provide the technical foundations for licensing, managing, and 

economically operating the current fleet of NPPs. To achieve both program and pathway goals [4], a 

series of pilot projects are underway to develop and demonstrate new technologies that can affect 

transformative change in NPP operations and support. The TERMS pilot project on risk-informed PdM 

strategy is developing the necessary technologies and methodology to address the five challenges outlined 

below 

There are several challenges with research, development, demonstration, and deployment that need to 

be addressed as plants transition from a PM program to a risk-informed PdM program. These include: 
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¶ Integration and synchronization of data collected at different spatial and temporal resolutions over 

several decades 

¶ Concerns over data imbalance (i.e., a significant amount of data collected when the plant system is 

operating under normal condition with no degradation and a limited amount of data are associated 

with degradation of the plant system) 

¶ Scalability of the AI/ML technologies across plant systems and the nuclear fleet to meet current and 

future application-specific requirements 

¶ User-centric visualization scheme to enable cross-facility users to understand the states of plant 

systems and the plant itself without having to remember and use separate visualization software 

¶ Explainability and trustworthiness of AI/ML technologies enabling modernization and automation 

across the plant. 

The research addressing the first four challenges is covered in [1ï3]. The challenge of explainability 

and trustworthiness of AI/ML technologies is critical for addressing their technical and regulatory 

adoption across the nuclear industry at scale and achieving seamless cost-effective automation without 

compromising plant safety and reliability. The technical basis ensuring wider adoption of AI/ML 

technologies presented in this report was developed by Idaho National Laboratory (INL), in collaboration 

with Public Service Enterprise Group (PSEG) Nuclear, LLC. To develop the initial technical basis, the 

circulating water system (CWS) at the PSEG-owned plant sites were selected as the identified plant asset. 

Specifically, the issue of waterbox fouling diagnosis in the CWS using different types of CWS data is 

presented to address said challenge. The approach presented in this report is based on the closedïloop 

forwardïbackward process that tries to capture the advancements in data science addressing the 

explainability of AI/ML outcomes, user-centric interpretability of those outcomes, and how user 

interpretation can be used as feedback to further simplify the process. A prototype interface is developed 

to present a focused component-level display of the ML model outputs in a usable and digestible form. 

This report is organized as follows: Section 2 presents the forwardïbackward closed-loop approach to 

enhance the possibility of AI/ML adoption in the nuclear industry and describes the fundamental aspects 

of the initial technical basis discussed in this report. Section 3 uses scenarios to demonstrate how to 

improve the interpretability of AI/ML technologies using metrics as the time-series data evolves over 

time, specifically, when data are missing or when new data are added to the already trained ML model. 

Section 4 describes the creation and evaluation of the interface with key considerations of explainability 

and trust. The testing of the developed interface presenting the AI/ML outcomes in a semi-structured 

interview format was performed with monitoring and diagnostic (M&D) analysts serving as participants. 

Section 5 summarizes research progress and discusses the path forward by highlighting a few open 

technical challenges. 

2. APPROACH ENSURING ADOPTION OF ARTIFICIAL 
INTELLIGENCE BASED SOLUTIONS IN NUCLEAR INDUSTRY  

Transforming the embedded knowledge in heterogeneous data sources collected by NPPs across 

structures, systems, and components into usable information for decision-making by the human-in-the-

loop requires a systematic approach. The approach might include the use of AI/ML technologies, but 

always follows these basics: (1) identification of plant asset of interest; (2) collection of all the relevant 

data associated with the identified plant system; (3) pre-processing of the data; (4) extraction of salient 

information from the data; (5) inputting the information and data into a model (which could be a physics-

based model, stochastic model, deterministic model, or AI/ML model); (6) model outputs; (7) 

visualization of outputs to be presented to the user; and (8) finally, decision or action taken by the user. 

An example of a data-to-decision roadmap developed for the risk-informed PdM strategy is shown in 

Figure 2. Observe, in Figure 2, the input layer presents different data types that is related to the CWS of a 
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PSEG-owned power plant and be true for any plant system. The inputs are broadly categorized into 

constant data values, periodic data, and real-time data. The details of real-time data are presented in 

Section 3. The risk-informed predictive analytics provide insight into how these different data types are 

used for different purposes and integrated. Different forms of analysis performed by models and their 

integration could lead to different outputs. The integration of these model outputs needs to be simple, 

clear, and consistent, ensuring the resultant outputs are reproducible and interpretable by the end-user. 

 

Figure 2. Data-to-decision roadmap for a risk-informed PdM strategy. 

To ensure the data-to-decision roadmap, shown in Figure 2, is widely adopted by the nuclear industry 

to address technical and regulatory concerns, automation with a human-in-the-loop, forwardïbackward 

closedïloop process can be implemented to ensure consistent results that are interpretable for the end-

users, as shown in Figure 3. 

 

Figure 3. Forward-backward process to ensure reproducibility and interpretability of AI/ML technologies. 

The forward process moves from data-to-decision (as in Figure 2) and is primary focus of research 

performed by data scientists as they develop AI/ML models. The forward process entails a rigorous 

Data
Information or 
Feature Space

Machine 
Learning 
Models

Outputs Decision
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mathematical approach that accounts for: data preprocessing; data integration; transformation of the data 

into usable information to train, validate, and test ML models; hyperparameter optimization of ML 

models; uncertainty quantification of final outputs by accounting for the accumulation of errors; and 

presentation of results to the end-user (as shown in Figure 3). In the forward process, without considering 

the end-user, there are variabilities introduced due to data, information, and models, that influence 

outputs. These variabilities include: 

¶ Data unavailability, inclusion of new data streams, changes in operating conditions, season variations, 

and others 

¶ Feature importance for a particular fault mode 

¶ Generalizability of linear and non-linear ML models (for example, neural networks, support vector 

machines, kernel regressions, random forest (RF), convoluted neural network, etc.), optimization of 

hyperparameters, and choice between supervised, semi-supervised, and unsupervised ML approaches. 

One of the aspects that also needs to be considered in the forward process is the need to retrain, 

revalidate, and retest ML models when the above-mentioned variabilities occur in the current data the 

extent (as determined by the novelty detection) that the base ML model performance needs to be re-

evaluated. It is important to evaluate these variabilities and determine a strategy to re-evaluate the base 

ML model. The re-evaluation strategy could be either periodic, on-demand, performance-based, or 

trigger-based based considering the on percentage change in data. 

The focus of this report is to explain AI/ML solutions by utilizing objective metrics that can capture 

the rigorous mathematics. The use of a metric-based approach allows quantification of the effectiveness 

of the explanation based on performance differences between the ML models, the number of features used 

to construct the explanation, and the stability of the explanation. 

The output values generated at the end of the forward process are expected to be used by an end-user 

in decision-making even if they are not readily and fully understood. This disconnect is expected to hurt 

the adoption of AI/ML technologies in critical decision-making. To address the technical communication 

barriers between data scientists and end-users, the backward process has been developed as a bridging 

approach. In the backward process section of this report, the objective metrics developed as part of the 

forward process to explain AI/ML technologies are verified by the end-user. Note, that though the end-

user verifies the objective metrics, care is taken to ensure that the verification doesnôt suffer from 

confirmation bias, as pointed out in [5]. A part of the backward process, a user-centric visualization is 

developed to present AI/ML outcomes with objective metrics and other information, to elicit user 

interpretation. Input elicited from end-users with different levels of expertise and functional position 

within the organization will be used to adapt the objective metrics and visualization to ease the user 

interpretation and requirements of AI/ML outcomes to inform the decision. 

In the following sections, the initial approach taken to build a foundation of forward-backward 

closed-loop process for waterbox fouling in a CWS is presented and discussed. 

3. DATA-TO-DECISION CONSIDERATION ENSURING ADOPTION OF 
ARTIFICIAL INTELLIGENCE BASED SOLUTIONS  

This section will discuss the forward process of how data is used to train, validate, and test three ML 

algorithms for the case study problem of waterbox fouling. This section details the recorded data, its 

variabilities, and the steps used to condition the data. Cleaned data is then used in three ML algorithms 

(extreme gradient boosting, RF, and deep neural networks) for classification of waterbox fouling. To 

improve the explainability of these models, Shapley Additive Explanations (SHAP) [6] and Local 

Interpretable Model-agnostic Explanations (LIME) [7] were implemented. These methods detail each 

featureôs contribution to the ML outcome. Improved explainability of how the model reached its 

conclusion is critical for acceptance and implementation of the algorithms. 
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3.1 Waterbox Fouling Issue in Circulating Water System  

Waterbox fouling is a common maintenance issue at the PSEG-owned Salem NPPs. Fouling of the 

waterboxes typically occurs due to the accumulation of grass/debris in the waterbox, thus resulting in 

condenser tube blockage and reduced circulator water flow. This is a unique and frequent issue where the 

circulating water pump (CWP) intake comes directly from the river, resulting in a significant quantity of 

grass/debris. Primary symptoms of waterbox fouling include: 

¶ Motor current increase (Sometimes seen by motor current decrease, but not often) 

¶ Inlet pressure increase 

¶ Waterbox differential temperature (DT) increase 

¶ Condenser thermal performance loss. 

Figure 4 shows an instance of waterbox fouling diagnosed in the Salem Unit 2, CWP 22B. An 

upward drift in DT and motor current was identified on July 23, 2018. Consequently, the gross load 

started dipping. Note in Figure 4, the CWP 22B motor current increased from 231 to 245 amps, and DT 

increased from 14ᴌ to 16ᴌ with Gross load not trending as expected. Motor current and DT decreased to 

220 amps and 14ᴌ, respectively, following waterbox cleaning on August 25, 2018, resulting in a 30-40 

MWe improvement in gross load. The waterbox fault and approximate date of the shutdown were found 

by searching the Work Order and narrative log information provided by PSEG [1]. 

 

Figure 4. An example of changes to the CWS process data before and after waterbox fouling at the 

Salemôs Unit 2 waterbox 22B. 

3.2 Data and Variabilities  

The Unit 1 and Unit 2 CWS process data are collected once every minute and stored in the Salem 

plantôs OSI PI system. Due to file size restrictions, the project team received hourly CWS process data for 

both units, from 2009 to January 2021. The process data includes: 

¶ Gross load (MWe) 

¶ River level (ft) 
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¶ Ambient air temperature (°F) 

¶ CWP inlet river temperature (°F) 

¶ CWP outlet water temperature (°F) 

¶ CWP motor status (ON or OFF) 

¶ CWP motor stator winding temperature (°F) 

¶ CWP motor inboard-bearing (MIB) temperature (°F) 

¶ CWP motor outboard-bearing (MOB) temperature (°F) 

¶ CWP motor current (Amps). 

Detailed information about all the data types can be found in our previous work [1-3]. Figure 5 shows 

a sampling of CWS process data for a Salem unit. 

Even though the data is available from 2008, not all the measurements were collected since that time. 

The motor current measurement is available from October 2017 onwards, and the online vibration 

measurements were collected from 2020 onwards. Other parameters, such as inlet pressure, were 

measured semi-periodically by hand. Due to the infrequent nature of those measurements, some of these 

parameters were excluded from the analysis. Additionally, the data collected had outliers, missing values, 

bad inputs, duplicate timestamps, daylight saving entries, and text entries. The outliers were identified 

using standard deviation and median filtering approaches. The repeated timestamps and daylight savings 

entries were removed and replaced with the missing timestamps. For missing values, a moving average 

approach was considered with a window size of 500 to 700 hours to fix continuous missing values. Some 

parameters, such as CWP MOB temperature, showed a seasonal dependance. In this situation, the 

parameter may contain more information about the ambient temperature than the condition of the motor. 

More details about the data cleaning can be found in our previous works [1], [3]. 

From the CWS associated plant process data, the following features are extracted for each pump-

motor set: 

¶ DT, calculated as the difference between the inlet river temperature and the outlet waterbox 

temperature. The outlet temperature is the combination of multiple pumps because each waterbox is 

connected to multiple CWPs. 

¶ Inboard, outboard, and stator motor temperatures. 

¶ Motor currents (available after September 2017). 

3.3 Feature Explainability Metrics  

This section covers the SHAP and LIME feature explainability metrics. These metrics are used to 

provide an explanation of how each feature contributes to the black-box algorithmsô outputs. For a single 

data snapshot, these methods can be used to explain an individual featureôs contribution. When used for 

an entire data set, these methods can be used to describe the featureôs importance. This section details 

how SHAP and LIME are calculated. 

3.3.1 Shapley Additive Explanations (SHAP)  

SHAP values are a feature additive approach where the output is a linear combination of inputs [6]. 

SHAP quantifies the influence that each input feature has on the prediction output. Calculating the exact 

Shapley values is generally infeasible but calculating the approximate SHAP values can be accomplished 

with an explanatory model. For an input sample of ὼ with ὓ features, the prediction for Ὦ  class is a 

linear combination of all the associated SHAP values: 
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Figure 5. Examples of CWS measurements: showing Gross load, temperatures for the Stator, MIB, MOB, 

Pump status, DT, and Motor current. 

Ὢὼ ὉὪὼ  ‰                                                     ρ 

where Ὢὼ , ὉὪὼ , and ‰  are the output (a.k.a. the logit) value for a fault, the average prediction 

value for a fault, and associated SHAP value for each feature, respectively. According to Equation (1), a 
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positive SHAP value associated with a feature indicates the feature is contributing to the prediction of Ὦ  

class label, whereas a negative SHAP value, indicates the feature is contributing to the prediction of a 

different class, Ὧ Ὦ. 

3.3.2 Local Interpretable Model -agnostic Explanations (LIME)  

LIME attempts to identify an interpretable model that is locally faithful to the classification model in 

question [7]. The interpretable explanations need to be presentable and digestible to the human-in-the-

loop. The interpretable model is a relatively straightforward model, such as a linear model or decision tree 

that tries to explain the feature contribution for a single point in time. The explanation, Ὣ, from this model 

determines the absence or presence of the interpretable components. These interpretable components are 

problem-dependent and will be different for numerical data, text, and images. Not all features, 

transformations, or combinations of features are readily explainable, so LIME attempts to ensure that the 

output is reasonably simple by introducing a measure of complexity, denoted as ɋ(g). This measure of 

complexity is determined by the class of interpretable models, denoted as G. For example, ɋ(g) can be 

the depth of the decision tree or the number of non-zero weights for the linear model. ὒὪȟὫȟ“  is the 

measure of how well that model explanation, Ὣ, is approximating the probability of x belonging to a 

certain class, Ὢὼȟ in the locality defined by “ . The LIME is produced by the following, 

‚ὼ  ὥὶὫάὭὲ ὒὪȟὫȟ“ ɱÇ                                                          ς 

where the locality -aware loss function ὒὪȟὫȟ“  is minimized with consideration of the explanationôs 

complexity, ɋ(g). This ensures that the result is locally faithful to the classifier and interpretable. Since no 

assumptions are made about the f, LIME outputs are model-agnostic. In Equation (2), the locality, “ , is 

weight with a distance function such as an exponential kernel as follows, 

“ ᾀ  ὩὼὴὈὼȟᾀ Ⱦ„                                                                σ 

where D is the distance function, x is the point of interest, z is randomly sampled from the feature space, 

and „ is the width. Although LIME is quite useful, it is limited by the class of interpretable models, G, 

and may not be useful if the underlying model is highly non-linear even in local predictions. 

3.4 Machine Learning Models  

The extracted parameters from plant process data form a feature vector ὼɴ ὢ, where ὢ is a feature set of 

size ὲ ά. Every feature vector is associated with a class label ώᶰὣ, where ὣ is label vector of length 

ὲ. The parameters ὲ and ά are the number of feature vectors and the number of features in a feature 

vector, respectively. Three of the most common advanced ML modelsðeXtreme Gradient Boosting 

(XGBoost) [8], RF [9], and Deep Neural Network (DNN) [10]ðwere considered for predicting waterbox 

fouling. The details on each of the models are discussed in the following subsections. Further, the 

hyperparameters, which control the prediction performance of each model are briefly discussed. 

3.4.1 Extreme Gradient Boosting  

Gradient boosting refers to a class of ensemble ML algorithms that can be used for classification and 

regression. A special class of ensemble learning is boosting in which decision trees are added one at a 

time to the ensemble and fit to correct the prediction errors made by prior models. Such boosting models 

fit using a differentiable loss function and gradient descent optimization are called gradient boosting. 

XGBoost [8] is an open-source implementation of a gradient boosting algorithm. 

3.4.2 Random Forest  

RF is also a ML algorithm that can be used for classification and regression through the ensemble of 

decision trees [9]. While a single decision tree can be subject to variability and noise, RF overcomes these 

issues by generating many decision trees and bootstrapping samples from the training data. Bootstrapping 

involves random sampling with replacement, so each individual decision sees a slightly different training 
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data set. The RF then aggregates the outputs from the many decision trees to produce the final regression 

value or classification. RF excels because it is easy-to-implement, accurate, and has built-in feature 

importance metrics due to the structure of the decision trees. RF is readily available in pythonôs sklearn 

library. 

3.4.3 Deep Neural Network  

A DNN contains multiple layers of interconnected neurons that create a complex, non-linear mapping 

from input to output [10]. The mapping is fit to the data through a process called backpropagation, where 

the neuronôs weights are adapted to best fit the training data. DNN has been used successfully for a wide 

variety of applications including classification, natural language processing, and speech recognition. 

TensorFlow was the open-source, deep-learning library used in this research. 

3.4.4 Hyperparameters of ML Models  

For XGBoost, the main hyperparameters [8] are number of estimators (denoted as ΠὩίὸὭάὥὸέὶί), 

άὥὼὭάόά ὨὩὴὸὬ, άὭὲὭάόά ὧὬὭὰὨ ύὩὭὫὬὸ, ὧέὰόάὲ ίὥάὴὰὩί ὴὩὶ ὨὩὧὭίὭέὲ ὸὶὩὩ, and 

ὶὩὫόὰὥὶὭᾀὥὸὭέὲ ὴὥὶὥάὩὸὩὶȟὫὥάάὥ. Hyperparameter optimization finds a list of hyperparameters and 

associated values that yield an optimal XGBoost model. For XGBoost models, the hyperparameter tuning 

was done using the hyperopt package which is a combination of grid search and random search 

approaches. 

For RF, the main hyperparameters are the number of decision trees, maximum depth, and criterion for 

measuring the quality of the split (e.g., Gini, entropy, and log loss). Hyperparameter tuning was also 

completed using the hyperopt package. 

Determining the optimal hyperparameters and structure for the DNN is more complicated than a 

simple grid search as used for XGBoost and RF. This requires determining the number of layers, the 

number of neurons in each layer, the batch size, number of epochs to train over, whether to include 

dropout and how much, validation split, output layer type, learning rate, and regularizers. The 

hyperparameters used in this research can be seen in Table 1. The number of epochs used in training 

varied based on validation accuracy. The DNN continued to train until the validation accuracy did not 

improve for five epochs in a row. A sigmoid output layer was used, so that the output was a confidence 

value for each classification class (healthy or waterbox fouling). Having confidence in the classification 

was essential for using LIME. L1 & L2 regularizers, which represent Lasso and Ridge regression, 

respectively, were implemented to prevent the DNN from overfitting the training data. 

Table 1. DNN parameters. 

Hyperparameter Value 

Number of layers 4 

Nodes per layer 128,64,64,1 

Batch size 64 

Epochs up to 500 

Dropout 20% 

Validation split 10% 

Optimizer Adam 

Activation function ReLu 

Output Layer Sigmoid 

Learning rate 0.01 

Loss function Accuracy 

L1 & L2 regularizer 1e-5, 1e-4 
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3.5 Results  

The waterbox fouling prediction performance was analyzed for each model. The performance of each 

model was observed by introducing variations such as a missing feature or different instances of waterbox 

fouling. All the prediction models were further used with SHAP/LIME models to provide local 

explanation for each instance as well as global explanation for the entire prediction performance. 

3.5.1 XGBoost Performance  

To build the XGBoost binary classification model to predict waterbox fouling (unhealthy), All the CWP 

data except CWP 13B was considered as training data, and CWP 13B alone was considered as test data. A 

total of 13,768 training samples and 1,566 testing samples were used. For the binary classification model, 

features such as differential temperature, MOP temperature, MIB temperature, motor stator temperature, 

and motor current were considered. The model performance under different scenarios of data availability 

is discussed in the following sections. The prediction performance was observed through metrics such as 

accuracy, precision (number of positive class predictions that actually belong to the positive class.), recall 

(number of positive class predictions made out of all positive examples in the dataset), and F1-score 

(balances the concerns of precision and recall as ςz
ᶻ

).   

3.5.1.1 All the features  

Here, it is considered that all the features are available in the training data and the model is complete 

and comprehensive to predict waterbox fouling. For the complete data set, a training accuracy of 91.4% 

and test accuracy of 89.3% is achieved. The classification performance results in terms of Precision, 

Recall, and F-score are shown in Table 2, and they indicate the overall performance can be above 90%. A 

deep understanding of the influence of each feature is made possible by using the SHAP model.  

Table 2. Classification performance results. (All the features are available). 

 Precision Recall F1-score 

Healthy 0.92 0.91 0.91 

Unhealthy 0.91 0.92 0.91 

Average 0.915 0.915 0.91 

 

With the SHAP model, we can understand the influence of each feature on the prediction of healthy 

or waterbox fouling. In Figure 6, a summary plot of SHAP values for waterbox fouling associated with 

the feature values is shown. Considering Equation (1) with Figure 6, it is understood that higher values of 

DT, motor stator temperature, and motor current influence the prediction of waterbox fouling as they have 

positive SHAP values. Conversely, MIB temperature has the opposite trend in which low temperatures 

contribute to predicting waterbox fouling. MOB temperature has a mixed effect on the SHAP values: both 

high and low MOB temperatures are sometimes associated with waterbox fouling. This uncertainty is due 

to the seasonal impact on the MOB temperature measurements. Considering the overall contributions of 

features, DT has been identified as the most significant feature in predicting healthy and waterbox fouling 

(Figure 7). MOB temperature, MIB temperature, and motor current have less impact on the waterbox 

fouling prediction. It is also important to note that, as per plant engineers, motor current is also one of the 

major fault signatures. Because the motor current sometimes increases and sometime decreases with 
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waterbox fouling, and naturally oscillates with river temperature during waterbox fouling, the ML model 

is not able to characterize the impact of motor current on waterbox fouling prediction. 

 

Figure 6. Feature value influence on SHAP values in prediction of Waterbox fouling. 

 

Figure 7. Feature importance for all the features in predicting waterbox fouling versus healthy data. 

Figure 6 and Figure 7 provide a global interpretation (which includes all the samples/instances) 

method on the prediction; a local interpretation (includes a single instance/sample) method on a single 

sample/instance (using Equation (1)) is observed through waterfall plots in Figure 8 for the waterbox 

fouling prediction and Figure 9 for the healthy condition prediction. In Figure 8, the prediction is 

waterbox fouling since the measured DT is around ρχᴌ and, the motor current is close to the ςψπὃάὴί. 
Similarly, in Figure 9, for healthy condition prediction, the MOB temperature is above ρππᴌ and less 

than the maximum operating limit. Both the motor current and the DT are within the operating limits. The 

color green in Figure 8 and Figure 9 means the feature at the measured instance is contributing positively 

to a class prediction. Whereas the color red (shown in later plots) implies the feature at the measured 
instance is negatively contributing to a particular class prediction. Thus, a local interpretation for an 
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instance can performed using SHAP values to identify the features contributing to the prediction of 

underlying CWP condition. 

 

Figure 8. Local interpretation of an instance corresponding to waterbox fouling. 

 

 

Figure 9. Local interpretation of an instance corresponding to healthy condition. 

3.5.1.2 Missing feature during training  

In this section, we consider scenarios of unavailability of certain measurements during training of the 

XGBoost model. In the first scenario, DT is missing, in the second scenario motor current is missing, and 

in the third scenario, MOB temperature is missing. The effect of feature values on their respective SHAP 

values for each of the scenarios are shown from Figure 10 to Figure 12. When DT is missing, the MOB 

temperatures show significant impact on larger SHAP values (both negatively and positively; see 

Figure 10). Essentially, low or very high MOB temperatures are associated with waterbox fouling. A 

similar trend can be seen when motor current is missing (see Figure 11). A higher motor current 
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measurement indicates waterbox fouling and low measurements indicate healthy conditions (see 

Figure 10 and Figure 12). The opposite behavior can be observed for MIB temperatures (Figure 10 to 

Figure 12). On the other hand, lower DT and motor stator temperatures indicate a healthy condition. 

However, the influence of MIB temperature on SHAP values is at the similar range for all the three 

scenarios. The feature importance and F1 score performance for each class prediction for the three 

scenarios of missing features during training is summarized in Table 3. The F1 scores indicate the 

unavailability of DT measurement could significantly reduce prediction performance while missing motor 

current or MOB temperatures have a marginal effect on the prediction performance. 

 

 

Figure 10. Feature value influence (when feature DT is missing) on SHAP values in prediction of 

Waterbox fouling. 

 

 

Figure 11. Feature value influence (when feature Motor Current is missing) on SHAP values in prediction 

of Waterbox fouling. 
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Figure 12. Feature value influence (when feature MOB temperature is missing) on SHAP values in 

prediction of waterbox fouling. 

Table 3. Prediction performance and feature importance under unavailability of different measurements 

during training. 

 

3.5.1.3 Missing feature  during inference  

From the historical plant process data, it is observed that due to either technical or equipment issues, 

measurements might be missing. In some cases, the measurements could be missing for days to weeks. 

The XGBoost model enables the use of the pretrained model, which was trained with the complete feature 

set, even in the instances where features are missing. Note that, for the XGBoost model, when a particular 

feature is missing, it will be replaced as NaN before inputting to the model. To test prediction 

performance, three scenarios are considered using an instance (Date: 2018-02-02 20:00:00) from the test 

data. In the first scenario, no features were missing; in the second scenario, the DT feature alone is 

missing; in the third scenario, motor current alone is missing. With all the features available, the model 

Missing Feature 

Feature Importance F1 Score 

Feature Healthy 
Waterbox 

Fouling 
Train Test 

DT 

MOB Temp 0.490 0.637 

0.83 0.88 
Motor Current 0.189 0.169 

MIB Temp 0.172 0.100 

Motor Stator Temp 0.150 0.094 

Motor Current 

DT 0.623 0.524 

0.91 0.89 
MOB Temp 0.168 0.235 

MIB Temp 0.127 0.120 

Motor Stator Temp 0.081 0.120 

MOB 

Temperature 

DT 0.684 0.524 

0.91 0.82 
Motor Current 0.112 0.209 

MIB Temp 0.133 0.158 

Motor Stator Temp 0.070 0.109 
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predicted the instance as waterbox fouling with Ὢὼ ρȢψ, which is larger than the base value, 

ὉὪὼ   πȢυπτ, with DT being the dominant feature (see Figure 13). In the second scenario, due to the 

missing DT feature, Ὢὼ πȢυχ (see Figure 14), marginally predicting as waterbox fouling. Whereas in 

the third case, when the motor current is missing, Ὢὼ ρȢς (see Figure 15), predicting as waterbox 

fouling. Thus, when the most significant features are missing, the prediction confidence level reduces as 

shown in Table 4.  

 

Figure 13. A test instance (2018-02-02 20:00:00) corresponding to waterbox fouling when all the features 

are available. 

 

Figure 14. A test instance (2018-02-02 20:00:00) corresponding to waterbox fouling when feature DT is 

missing. 
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Figure 15. A test instance (2018-02-02 20:00:00) when feature Motor Current is missing. 

Table 4. SHAP model prediction results for the CWP 13B instance 2018-02-02 20:00:00 for Waterbox 

fouling. 

Missing Features Prediction Value, f(x) Base Value, E[f(x)]  Prediction Probability 

None 1.80 0.504 0.94 

DT 0.57 0.504 0.68 

Motor Current 1.22 0.504 0.82 

 

3.5.2 Random Forest and Deep Neural Network Performance  

To build the RF and DNN binary classification models to predict waterbox fouling, each pump in the 

CWP data was considered in the training, testing, and validation data sets. The training and testing sets 

were divided into 4 folds, based on time, for cross validation. Figure 16 visually shows the 4 folds and the 

times in which they are split. The top values mark instances of waterbox fouling, while the bottom shows 

examples of healthy labeled data. To create the validation data set, 20% of the training dataset was 

separated using a stratified k-fold method. This method removes sections from training data for 

validation, while preserving the same percentage of each class in both data sets. Removing sections of 

data prevents overconfidence when training the DNN models as points will not be side-by-side in time. 

Also, preserving the percentage of each class in the validation set prevents the model from overfitting an 

over-represented class. For the binary classification models, the features DT, MOB temperature, MIB 

temperature, motor stator temperature, and motor current were considered. Model performance under 

different scenarios of data availability is discussed in the following sections. 

The RF and DNN were trained and tested using cross validation. However, each fold does not contain 

the exact same labels in quantity, spacing, or severity. This led to differences in accuracy between each 

fold. Table 5 shows the accuracy of the RF when predicting a single fold. Folds 3 and 4 show unique 

behavior and are highlighted in yellow. Fold 3 shows a higher testing accuracy than training accuracy, 

which indicates that the testing data set was easier to classify or more separation was seen between the 

classes. For Fold 4, the RF appears to overfit the training data with a perfect training accuracy, but a less 

than average testing accuracy. 
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Figure 16. Training and test data were split into time segments with similar amounts of labeled data for 

healthy and waterbox fouling data. These time segments became folds for cross validation of the models' 

performance. 

Table 5. RF training and testing accuracies with inputs of DT, MOB temperature, and motor current. The 

highlighted portion shows an instance of testing data well within the training distribution and an instance 

of overfitting. 

Fold RF Training Accuracy RF Testing Accuracy 

1 0.905 0.842 

2 0.917 0.843 

3 0.874 0.923 

4 1.000 0.825 

 

To compensate for the inherit model variability as well as the variability in the data, each fold was 

trained and tested 10 times for both RF and DNN algorithms. The average results and their standard 

deviations are shown in Table 6. Five features were available for use including DT, MOB temperature, 

MIB temperature, motor stator temperature, and motor current. First, all features were used as inputs. This 

led to the highest training accuracies but did not translate to the highest testing accuracies. Second, just 

the DT and motor current were used. This combination, along with inlet pressure, which was not available 

for this study, contains the primary features that operators currently use to determine if waterbox fouling 

is present, but produced below-average results as additional useful information is contained in the 

excluded features. DT, motor current, and MOB temperature were considered the top three most 

important features as determined by both SHAP and LIME, shown in Table 7. This input combination 

produced the most accurate models for the testing data. New information was gained by including MOB 

temperature, but it seems like MIB and motor stator temperatures either contain redundant or irrelevant 

information that did not aid the model as much in classification. From this analysis, it seemed that the 

MOB temperature primarily followed the ambient temperature. This can be clearly seen in Figure 17 as 

MOB temperature is showing a seasonal dependance, being hotter in summer months and cooler in winter 

months. The useful information contained in this variable may relate more to this seasonality rather than 

anything related to the waterbox fouling condition itself. 

 

 




































